Set theory, formalized using first-order logic, is the most common foundational system for mathematics. The language of set theory is used in the definitions of nearly all mathematical objects, such as functions, and concepts of set theory are integrated throughout the mathematics curriculum. Elementary facts about sets and set membership can be introduced in primary school, along with Venn diagrams, to study collections of commonplace physical objects
A set is a collection of distinct objects considered as a whole. Sets are one of the most fundamental concepts in mathematics and their formalization at the end of the 19th century was a major event in the history of mathematics and lead to the unification of a number of different areas. The idea of function comes along naturally, as "morphisms" between sets.
The study of the structure of sets, set theory, can be viewed as a foundational ground for most of mathematical theories. Sets are usually defined axiomatically using an axiomatic set theory, this way to study sets was introduced by Georg Cantor between 1874 and 1884 and deeply inspired later works in logic. Sets are representable in the form of Venn diagrams, for instance it can represent the idea of union, intersection and other operations on sets.
The union of two sets is the set that contains everything that belongs to any of the sets, but nothing else. It is possible to define the union of several sets, and even of an infinite family of sets.
Georg Cantor (March 3, 1845 – January 6, 1918) was a German mathematician. He is best known as the creator of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of one-to-one correspondence between sets, defined infinite and well-ordered sets, and proved that the real numbers are "more numerous" than the natural numbers. In fact, Cantor's theorem implies the existence of an "infinity of infinities". He defined the cardinal and ordinal numbers, and their arithmetic. Cantor's work is of great philosophical interest, a fact of which he was well aware.
Did you know?
- ... that there exists a composition of binary relations consistent with the composition of functions ?
- ... that there is an ordinal arithmetic extending the arithmetic of integers to the ordinal numbers ?
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.